Tidal Wetland Biogeochemistry in High Definition: Using High-Frequency Measurements to Estimate Biogeochemical Rates

> Brian Bergamaschi, Bryan Downing, Tamara Kraus and many, many, many others; several in the room

A special thanks to and remembrance of George Aiken, without whom my career would have taken a very different and less salubrious path



### Outline

Introduction

Rate determination using continuous in situ measurements and proxies

Rate determination using mapping together with residence time techniques

Rate determination using multiple continuous sensor deployments and hydrodynamic models

New and revisited efforts

Final thoughts

## **Biogeochemical Rates**

Assess how marsh interactions affect aquatic ecosystems as related to landscape elements, hydrodynamics and geomorphology

### Rate

- Export production
- Nutrient cycling
- Sediment trapping
- Contaminant yield
  - Mercury
- Carbon and GHG balance

### Landscape

- Emergent marsh
- Marsh plain
- Submerged aquatic vegetation
- Small dendritic sub channels
- Inter-tidal mudflats





### In situ measurements

### **Commercially-available submersible instruments:**

- Fluorometers single and multiple wavelength; custom
- Spectrophotometers UV and UV-vis
- Wet chemistry
- Optodes







# Rate determination using continuous in situ measurements and proxies



### **PROXY MEASUREMENT: Methylmercury export**

Proxy measurements for high resolved MeHg flux from a tidal wetland, Browns Island, CA

April 2005



May 2005

Bergamaschi et al., 2011,

April 2005



### **PROXY MEASUREMENT:** All mercury species and phases



DISSOLVED

UNFILTERED

#### PARTICULATE



<sup>(</sup>Downing et al., 2009)

### Methylmercury fluxes and yields



#### YIELDS:

 $2.5 \ \mu g \ m^{-2} \ yr^{-1}$ 

4-40 times previously published yields

Variation related to: Tides River flow Storms Wind direction Barometric pressure

> Bergamaschi et al., 2011 Bergamaschi et al., 2012

# Rate determination using mapping together with residence time techniques



### Water Quality in the Study Area



### Mapping of water isotopes $\delta^{18}\text{O}$ and $\delta^{2}\text{H}$







### From water isotope ratios to residence time



 $\frac{\% E \times D}{ETo \times 1.1}$ 

 $\frac{E}{I} = \frac{\delta I - \delta_L}{m(\delta^* - \delta_L)}$ 

Downing et al. ES&T (2016)

CIMIS ETo Data

### Nitrate uptake rates



# Rate determination using multiple continuous sensor deployments and hydrodynamic models





# Estimating nitrification rates from nitrate changes down river



(Kraus et al., 2017)

### Change in nitrate



**Figure 9**. (A.) Net change in NO3 concentration calculated by subtracting concentrations at FPT from WGA, taking travel time between the two stations into account. Error bars showing standard deviation are indicated in orange and red delineates the 0 line associated with no change. (B.) Rate of NO3 change, calculated as the change NO3 divided by travel time. Error bars showing standard deviation are indicated in yellow, and red line delineates 0.

(Kraus et al., 2017)

### Travel time model for tidal system

$$t_t = t * \sum_{km=0}^{29} (v_{fpt} * t) \frac{d_{fpt}}{29} + (v_{wga} * t) \frac{d_{wga}}{29}$$



### Nitrification rates from the literature



#### Table 6. Nitrification rates reported in the literature.

| Region                                      | Method                | Nitrification Rate (mg-N/L-d)                              | Season                             | Reference                   |
|---------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|-----------------------------|
| Sacramento River, California                | Net<br>Transformation | $0.026 \pm 0.011  0.045 \pm 0.012$                         | September 2013 - September 2014    | This study 2015             |
| Puget Sound, Washington                     | 15-N                  | 0.000112-0.00581                                           | May, August, October,<br>December  | Urakawa et al. 2014         |
| Chang Jiang River, China                    | 15-N                  | up to 0.064                                                | August, after typhoon              | Hsiao et al. 2014           |
| San Francisco Bay Delta,<br>California      | Net<br>Transformation | 0.056 (net transformation)<br>0.090 (nitrification factor) | March-April 2009                   | Parker et al. 2012          |
| Scheldt Estuary, France                     | 15-N                  | 0.032-0.236                                                | January, April, July, October 2003 | Andersson et al. 2006       |
| Rhone River, Northwest<br>Mediterranean Sea | 14-C                  | up to 0.058                                                | November 1991-October<br>1992      | Bianchi et al. 1999         |
| Urdaibai Estuary, Spain                     | 14-C                  | 0.00028-0.065                                              | August 1994                        | Iriarte et al. 1996         |
| Rhone River, Northwest<br>Mediterranean Sea | 14-C                  | 0.014-0.028                                                | May 1992                           | Fliatra and Bianchi<br>1993 |
| Tamar Estuary, England, UK                  | 14-C                  | up to 0.042                                                | May-August 1982                    | Owens 1986                  |
| Delaware River, New Jersey                  | 15-N                  | 0.0154-0.0266                                              | July and September 1983            | Lipschultz et al. 1986      |

### Nitrification rate and Temperature





### **Benthic fluxes**

#### **Benthic chamber – real time flux measurements**





*Figure 3. Graph showing change in nitrate concentration over time.* 

## **Final Thoughts**

- New innovative methods are needed to understand the coupling of wetlands with pelagic aquatic systems
  - Many improvements are needed in current methods
  - Especially to improve scalability and transferability
- New instrumentation provides new opportunities
  - We need to be creative in their use
- High resolution data is needed to bound variability
  - Continuous measurements are necessary
  - tidal systems are dynamic cannot extrapolate from one or a few tides and get the right answer
- Water age/residence time is an important driver of biogeochemical processes in wetlands
  - Should include in our studies
- Systematic methods are needed for scaling from plot-based to landscapescale assessments
  - Typological models of wetland geomorphology and hydrodynamics
  - Need many additional studies using common techniques

# THANKS!

### bbergama@usgs.gov

papers available at: http://profile.usgs.gov/bbergama/

### **Residence time (τ)**



# Presence and Absence of Wastewater

- Multiple WW holds during study period
  - ~30 holds
  - >7 hours
  - ~ 5 km parcel of wastewater free water



### Areas needing improvement

- o Better constraints on yield area
  - Soil drainage rates
  - Improved calculations
  - Model integration
- Longer records from different systems
  - Magnitude of variability
  - Modes and drivers of variation
- o Models
  - Wetland typology
  - Critical characteristics





- Because you need to
  - even for loads.....C:Q often doesn't work.
  - In tidal systems.....fuhgetaboutit
- Separate among multiple modes of variability in ecological drivers
- Understand and **quantify** fluxes and process rates
- Identify long term trends
- IMPROVE DISCRETE SAMPLING
  - Identify appropriate sampling timing and frequency
  - Establish linkages between discrete samples
  - Place discrete sampling to environmental and hydrologic context and relate to antecedent conditions